Skip to content

Conversation

@codeflash-ai-dev
Copy link

📄 50,121% (501.21x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 147 milliseconds 292 microseconds (best of 1029 runs)

📉 This change improved performance of the following benchmarks:

Benchmark File :: Function Original Runtime Expected New Runtime Speedup
test_benchmark_bubble_sort.py::test_sort 7.90 milliseconds 55.1 microseconds 14229.88%
test_process_and_sort.py::test_compute_and_sort 18.8 milliseconds 10.9 milliseconds 73.10%
test_process_and_sort.py::test_no_func 8.33 milliseconds 139 microseconds 5909.66%

📈 This change degraded performance of the following benchmarks:

Benchmark File :: Function Original Runtime Expected New Runtime Slowdown
test_sample_benchmark.py::test_sample_function 5.0 milliseconds 7.5 milliseconds 50.00%
📝 Explanation and details

Certainly! The given code implements a bubble sort algorithm which is not the most optimal sorting method in terms of speed. We can significantly optimize the sorting by using Python's built-in Timsort algorithm provided by the sorted() function or the sort() method of the list. Here's the optimized version of the program.

This version leverages the sort() method of the list which implements Timsort, a hybrid sorting algorithm derived from merge sort and insertion sort, providing a much better performance.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 47 Passed
⏪ Replay Tests 9 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

def test_basic_sorted_list():
    # Already sorted list
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter([-5, -3, 0, 2, 4])

def test_basic_reverse_sorted_list():
    # Reverse sorted list
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter([4, 2, 0, -3, -5])

def test_basic_unsorted_list():
    # Unsorted list
    codeflash_output = sorter([3, 1, 4, 5, 2])
    codeflash_output = sorter([0, -1, 3, -2, 2])

def test_edge_empty_list():
    # Empty list
    codeflash_output = sorter([])

def test_edge_single_element_list():
    # Single element list
    codeflash_output = sorter([1])
    codeflash_output = sorter([-5])

def test_edge_identical_elements_list():
    # List with identical elements
    codeflash_output = sorter([2, 2, 2, 2])
    codeflash_output = sorter([-3, -3, -3, -3])

def test_mixed_positive_negative_numbers():
    # Mixed positive and negative numbers
    codeflash_output = sorter([-1, 2, -3, 4, 0])
    codeflash_output = sorter([5, -6, 7, -8, 9])

def test_list_with_duplicates():
    # List with duplicates
    codeflash_output = sorter([4, 2, 2, 3, 1, 4])
    codeflash_output = sorter([1, 3, 3, 2, 1, 2])

def test_large_scale():
    # Large list
    large_list = list(range(1000, 0, -1))
    sorted_large_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)

def test_float_numbers():
    # Float numbers
    codeflash_output = sorter([1.1, 2.2, 0.5, 3.3, 2.2])
    codeflash_output = sorter([-1.1, -2.2, 0.5, 3.3, -0.5])

def test_strings():
    # Strings
    codeflash_output = sorter(["apple", "banana", "cherry", "date"])
    codeflash_output = sorter(["zebra", "monkey", "elephant", "ant"])

def test_large_numbers():
    # Large numbers
    codeflash_output = sorter([1000000, 999999, 1000001, 1000002])
    codeflash_output = sorter([-1000000, -999999, -1000001, -1000002])

def test_special_values():
    # Special values
    codeflash_output = sorter([float('inf'), 1, float('-inf'), 0])
    # Note: Sorting with NaN values may have undefined behavior
    codeflash_output = sorter([float('nan'), 1, 2, 3]); result = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

def test_empty_list():
    # Test with an empty list
    codeflash_output = sorter([])

def test_single_element_list():
    # Test with a single element list
    codeflash_output = sorter([1])
    codeflash_output = sorter(["a"])

def test_already_sorted_list():
    # Test with an already sorted list
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter(["a", "b", "c", "d"])

def test_reverse_sorted_list():
    # Test with a reverse sorted list
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter(["d", "c", "b", "a"])

def test_list_with_duplicates():
    # Test with a list containing duplicate elements
    codeflash_output = sorter([3, 1, 2, 3, 1])
    codeflash_output = sorter(["b", "a", "b", "a"])

def test_list_with_negative_numbers():
    # Test with a list containing negative numbers
    codeflash_output = sorter([3, -1, 2, -3, 1])
    codeflash_output = sorter([-5, -1, -3, -2, -4])

def test_list_with_mixed_positive_and_negative_numbers():
    # Test with a list containing both positive and negative numbers
    codeflash_output = sorter([3, -1, 2, -3, 1])
    codeflash_output = sorter([-5, 1, -3, 2, -4])

def test_list_with_floating_point_numbers():
    # Test with a list containing floating point numbers
    codeflash_output = sorter([3.5, 1.2, 2.8, 3.1, 1.9])
    codeflash_output = sorter([0.1, -2.3, 3.3, -1.1, 2.2])

def test_list_with_strings_of_different_lengths():
    # Test with a list containing strings of different lengths
    codeflash_output = sorter(["apple", "banana", "cherry", "date"])
    codeflash_output = sorter(["a", "abc", "ab", "abcd"])

def test_large_list():
    # Test with a large list to assess performance and scalability
    codeflash_output = sorter(list(range(1000, 0, -1)))
    codeflash_output = sorter(list(range(10000, 9000, -1)))

def test_list_with_mixed_data_types():
    # Test with a list containing mixed data types that cannot be compared
    with pytest.raises(TypeError):
        sorter([1, "a", 3, "b"])
    with pytest.raises(TypeError):
        sorter([3.5, "apple", 1, "banana"])

def test_list_with_boolean_values():
    # Test with a list containing boolean values
    codeflash_output = sorter([True, False, True, False])
    codeflash_output = sorter([False, False, True, True])
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-m8qa41o5 and push.

Codeflash

Certainly! The given code implements a bubble sort algorithm which is not the most optimal sorting method in terms of speed. We can significantly optimize the sorting by using Python's built-in Timsort algorithm provided by the `sorted()` function or the `sort()` method of the list. Here's the optimized version of the program.



This version leverages the `sort()` method of the list which implements Timsort, a hybrid sorting algorithm derived from merge sort and insertion sort, providing a much better performance.
@codeflash-ai-dev codeflash-ai-dev bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Mar 26, 2025
@codeflash-ai-dev codeflash-ai-dev bot requested a review from alvin-r March 26, 2025 18:49
@alvin-r alvin-r closed this Mar 26, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants